
INTERACTIVE AIRCRAFT LAYOUT OF
PASSENGER ACCOMMODATION TOOL
STUDENTS: Alyssa Weed, Michelle Chuang, Sandesh Banskota

ADVISORS: Jaci Bartol, James Seagraves, Jim Pattison, Damon Zirkler, Chris Barber, Tony Heupel, Colleen Piper, Lisa Roderiques, Dr. Ken Eguro

SPONSORS: Alaska Airlines

• LOPAs are a standard way to represent the layout of the passenger
accommodations within the airplane, such as seats and lavatories

• Current process requires use of tables and drawings, and processes
are different across Boeing/Airbus fleets

• This tool is an efficient alternative that streamlines the process and
allows quicker redesigns of LOPAs

• The tool is a full-stack website, hosted on Azure, that allows users to
create, adapt, save, and download LOPAs for any of Alaska’s fleets

Layout of Passenger Accommodation (LOPA) Final Deliverable

Future Work:
• Integrate current login system with Alaska’s Single Sign-On (SSO)
• Option to view the LOPA in 2D (current implementation) or 3D
• Add Airbus A321 fleet option

Conclusion, Future Work, and References

Tool Requirements and Goals
• Minimum requirements:

○ A full-stack web application, stored on
Alaska IT’s Microsoft Azure platform

○ 737-900ER: display aircraft footprint and
integrate part information

○ 2D representation of up and down views
of the airplane

○ Accurately display part (dimensions)
○ Different UI for fixed versus variable

objects
○ Option to open a pop-up window for

any part with its part information
○ Save versions of LOPA in a database
○ Download LOPA visualization and parts

included
• Stretch goals:

○ LOPA tool for all of Alaska’s fleets
○ 3D representation of up and down views

Front-End Software
• Angular is organized by component, with its router

module controlling which component to display
• We have five main components: login, create account,

files display, create project, graphics
• The login/files pages are created with Bootstrap

○ Bootstrap: CSS/HTML/JS library with design
templates to streamline visual element creation

• The graphics page use WebGL and Three.js for the main
display visuals and navigation
○ WebGL: JavaScript API for interactive graphics
○ Three.js: JavaScript library to handle WebGL

vectorization
• The graphics page’s tools and information panels are

pure HTML elements
• The user interacts with the application via event

listeners, linked to actions such as click and keydown

• Front-end:
○ Log in or create a new account to access the tool
○ After logging in, the user is taken to their files, where they can

open a previous project or create a new one
○ User-interface tools allow the user to place and manipulate items

according to their type
■ Items are either fixed or variable; types are seat, lavatory,

galley, closet, or class divider
■ Different interaction modes are toggled via a toolbar
■ Items are automatically labeled/numbered

○ All actions can be undone/redone up to 10 states back
○ Right-clicking on any item opens its corresponding popup, with

information about the part and an image of it
○ When a project is saved, the location and type of each object is

processed and sent to the database
○ Project can be downloaded, creating a CSV with all parts in the

LOPA with their part information and a PDF of the visual layout

• We are using a MEAN stack software architecture setup
• It is a purely JavaScript/TypeScript stack setup for dynamic

website and web application development
• MEAN stands for MongoDB, Express.js, Angular, Node.js

○ MongoDB: NoSQL database with JSON documents
■ Reduces processing required for received JSON files

○ Express.js: web-framework for Node.js
○ Angular: front-end platform and framework
○ Node.js: back-end runtime environment

Back-End Software

General Software Architecture

[1] Alaska Airlines, “Boeing 737-900ER Aircraft
Information,” 737-900ER. [Online]
[2] “What is the MEAN Stack? Introduction &
Examples,” MongoDB. [Online]. Available:
https://www.mongodb.com/mean-stack. [Accessed:
24-May-2021].
[3] “How MEAN Stack Work?,” IT Outsourcing China,
06-Jun-2019. .

Example popup, of 3520 seat

• Back-end:
○ Handles authentication, login verification, new accounts, and project creation/storage
○ Tracks users: their email, password, and projects
○ Stores project information: its owner, locking mutex, list of parts in LOPA with corresponding

location
○ Checks file permissions, granting users read-only access or read/write access to individual files
○ When a project is requested by a client, the stored project data is sent to the front-end, where it is

processed and the project is displayed

Key Milestones
• Determine the software architecture of the full-stack website
• Develop user-interface for LOPA tool
• Integrate database communication and storage

Left half of top view and right half of bottom view from the PDF of the visual layout

[1]

[2]

We successfully created a full-stack web application for an Interactive Aircraft LOPA Tool. We completed
all of the requirements, along with some of the stretch goals, producing a fully functional LOPA creation
tool.

• The backend for the project consists of two parts: a Node.js Application Programming Interface
(API) and a MongoDB database

• Node.js is hosted on Azure App Services and consists of:

○ MongoDB.js database communication framework does the following tasks:
■ Find, retrieve, remove, and add data to the MongoDB
■ Data includes usernames, passwords, current projects, and associate project data

• MongoDB is hosted on Azure CosmosDB and is organized by collections
○ Each collection is meant for a different data structure type
○ Within collections, each instance of data is stored in a “Document”

○ Express.js, the web server, is used for POST requests
from the client and providing logical responses to
the client (i.e. login request, project access, etc)

[3]

